Disclaimer

The information contained in this presentation is being supplied and communicated to you solely for your information and may not be reproduced, further distributed to any other person or published, in whole or in part, for any purpose.

The distribution of this presentation in certain jurisdictions may be restricted by law, and persons into whose possession this presentation comes should inform themselves about, and observe, any such restrictions. Although reasonable care has been taken to ensure that the facts stated in this presentation are accurate and that the opinions expressed are fair and reasonable, the contents of this presentation have not been verified by Silence Therapeutics plc (the “Company”) or any other person. Accordingly no representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information and opinions contained in this presentation and no reliance should be placed on such information or opinions. None of the Company, or any of its respective members, directors, officers or employees nor any other person accepts any liability whatsoever for any loss howsoever arising from any use of such information or opinions or otherwise arising in connection with this presentation. No part of this presentation, or the fact of its distribution, should form the basis of or be relied upon in connection with any contract or commitment or investment decision whatsoever. This presentation does not form part of any offer of securities, or constitute a solicitation of any offer to purchase or subscribe for securities or an inducement to enter into any investment activity. Recipients of this presentation are not to construe its contents, or any prior or subsequent communications from or with the Company or its representatives as investment, legal or tax advice. In addition, this presentation does not purport to be all-inclusive or to contain all of the information that may be required to make a full analysis of any transaction. Further, the information in this presentation is not complete and may be changed. Recipients of this presentation should each make their own independent evaluation of the information and of the relevance and adequacy of the information in this document and should make such other investigations as they deem necessary.

Securities in the Company have not been, and will not be, registered under the United States Securities Act of 1933, as amended (the “Securities Act”), or qualified for sale under the law of any state or other jurisdiction of the United States of America and may not be offered or sold in the United States of America except pursuant to an exemption from, or in a transaction not subject to, the registration requirements of the Securities Act. Neither the United States Securities and Exchange Commission nor any securities regulatory body of any state or other jurisdiction of the United States of America, nor any securities regulatory body of any other country or political subdivision thereof, has approved or disapproved of this presentation or the securities discussed herein or passed on the accuracy or adequacy of the contents of this presentation. Any representation to the contrary is unlawful.

Safe Harbour statement: this presentation may contain forward-looking statements that reflect the Company’s current views and expectations regarding future events. In particular certain statements with regard to management’s strategic vision, aims and objectives, the conduct of clinical trials, the filing dates for product license applications and the anticipated launch of specified products in various markets, the Company’s ability to find partners for the development and commercialisation of its products as well as the terms for such partnerships, anticipated levels of demand for the Company’s products (including in development), the effect of competition, anticipated efficiencies, trends in results of operations, margins, the market and exchange rates, are all forward looking in nature.

Forward-looking statements involve risks and uncertainties that could cause actual results to differ materially from those expressed or implied by the forward looking statements. Although not exhaustive, the following factors could cause actual results to differ materially from those the Company expects: difficulties inherent in the discovery and development of new products and the design and implementation of pre-clinical and clinical studies, trials and investigations, delays in and results from such studies, trials and investigations that are inconsistent with previous results and the Company’s expectations, the failure to obtain and maintain required regulatory approvals, product and pricing initiatives by the Company’s competitors, inability of the Company to market existing products effectively and the failure of the Company to agree beneficial terms with potential partners for any of its products or the failure of the Company’s existing partners to perform their obligations, the ability of the Company to obtain additional financing for its operations and the market conditions affecting the availability and terms of such financing, the successful integration of completed mergers and acquisitions and achievement of expected synergies from such transactions, and the ability of the Company to identify and consummate suitable strategic and business combination transactions and the risks described in our most recent Admission Document.

By participating in this presentation and/or accepting any copies hereof you agree to be bound by the foregoing restrictions and the other terms of this disclaimer.
<table>
<thead>
<tr>
<th>Valuable Platform</th>
<th>> Reproducible, proprietary gene silencing (RNAi) therapeutics platform, rapidly generating internal pipeline and out-licensing options. Platform validated through collaborations with Mallinckrodt and Takeda</th>
</tr>
</thead>
</table>
| Growing Clinical Pipeline | > SLN124 (β-Thalassemia and MDS\(^1\)) - Phase Ib trial underway
> SLN360 (CVD with high LP(a)) - IND/CTA in H2 2020
> SLN500 (C3) - IND/CTA in 2021 |
| Strong Experienced Team | > Pioneers in siRNA for over 18 years, growing clinical team, and experienced biopharma Board and Management team
> New CEO recruitment ongoing |
| Target Selection | > Focused on targeting indications in rare diseases and large population targets, including new medicines for cardiovascular disease and complement-mediated diseases |
| Strong Financial Position | > $44m of cash\(^2\) extends runway to key clinical milestones such as SLN360 and SLN124 Phase I trial readouts |

Notes:

\(^1\) MDS = Myelodysplastic syndrome
\(^2\) Unaudited, 31\(^{st}\) Dec 2019, £=$1.32
2019 Accomplishments & 2020 Outlook

<table>
<thead>
<tr>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLN124
Phase Ib CTA filed.
Several sites open and recruiting.
Orphan drug designation granted by EMA for β-Thalassemia.</td>
<td>SLN124
First patient dosed expected in Q1 2020.
On track to report interim results in H2 2020.</td>
</tr>
<tr>
<td>SLN360
Pre-IND meeting held with FDA in Dec.
IND-enabling studies progressing well.</td>
<td>SLN360
On track for IND/CTA in H2 2020.
Expect First Patient dosed shortly afterwards.</td>
</tr>
<tr>
<td>MNK collaboration
SLN500 partnered in July, targeting C3 for complement-mediated diseases.
1st $2m milestone met in Sep.</td>
<td>MNK Collaboration
SLN500 lead candidate in H1 2020.
Potential for MNK to license up to two further targets.</td>
</tr>
<tr>
<td>Strengthened team
Management team strengthened with several new hires, including Giles Campion as Head R&D and CMO.</td>
<td>People
Recruitment of new CEO ongoing.
Scientific Advisory Board (SAB) to be formed - led by Sir Gordon Duff.</td>
</tr>
<tr>
<td>Cash - $44m at ye
Balance sheet solidified with $27m from MNK. Cash into 2021 and clinical readouts for SLN124 and SLN360.</td>
<td>BD opportunities
Technology Evaluation Agreement with Takeda signed in Jan. Targeting further platform deals to leverage our technology.</td>
</tr>
<tr>
<td>RNAi momentum
1st GalNAc siRNA approved by the FDA (Givosiran – Alnylam). The Medicines Co (Inclisiran) acquired by Novartis for c.$9Bn.</td>
<td>Corporate
Given our increased US focus, a US subsidiary to be formed during 2020.</td>
</tr>
</tbody>
</table>

CTA: Clinical Trial Application. **IND**: Investigational New Drug. **EMA**: European Medicines Agency. **MNK**: Mallinckrodt Pharmaceuticals.
Leadership

Interim Executive Chairman
Iain Ross
- Appointed as Chairman in April 2019 and Executive Chairman in Dec 2019 until new CEO is appointed
- Over 40 years’ experience in the international life sciences and technology sectors, where he has completed multiple financing transactions, multiple IPOs and has over 25 years in cross-border management as Chairman and CEO

Head R&D, CMO
Giles Camplon
- Former Chief Medical Officer and SVP R&D at Prosensa (2009-2016), playing a major role in their Nasdaq IPO and subsequent sale to Biogen for $680m
- Most recently CMO at Albumedix
- Spent 4 years in senior R&D roles at Novartis
- Medical degree and doctorate from Bristol University

CFO
Rob Quinn
- Chartered accountancy training at Deloitte before joining GSK
- Area Finance Director for Africa and Developing Countries at GSK
- Joined Silence in early 2017 as Head FP&A
- PhD in Biochemistry from the University of Manchester
Experienced Broader Management Team

Head of Manufacturing
Jorgen Wittendorff
- Over 25 years’ experience in the development of pharmaceutical products
- Most recently Senior Director, CMC Manufacturing and Supply at Ablynx, prior to acquisition by Sanofi

Head of HR
Linnea Elrington
- Experienced HR professional. Formerly Global Head of Organization Development at Glory Global Solutions
- Earlier served in senior HR roles at Deloitte
- Chartered member of the Institute of Personnel and Development

Head of BD
John Strafford
- Broad experience in biotech, management consulting and specialty pharma. Including Advanz Pharma, Navigant and Antisoma
- PhD in Biochemical Engineering from University College London

General Counsel
Barbara Ruskin
- GC and Chief Patent Officer
- Over 25 years’ experience in IP and corporate law, including as Partner at Ropes & Gray and GC roles at Bionor and MTEM
- PhD in Biochemistry from Harvard University
GalNAc (Ligand) Conjugation Allows for Delivery of siRNA to Liver Cells

Liver-specific and long-lasting siRNA activity after internalization of GalNAc conjugate

Naturally Excreted within 24h (when not uptaken by hepatocytes)
Platform delivery technology: GalNAc-siRNA able to mediate highly specific gene silencing in hepatocytes (liver) – “Specificity upon specificity”.

Patient friendly: Subcutaneous delivery and infrequent dosing (monthly or longer). Well tolerated\(^1\).

~7,000 proteins expressed in the liver. Silence can target any of them by adapting the siRNA sequence, using the same technology.

\(^1\) Well tolerated in animal models tested.
A Competitive Platform, With Continuous Fine-Tuning to Further Improve Performance

- **Modification pattern**: number of non-natural modifications reduced from c.50% to <15% through the discovery of novel modification patterns
- **End stabilization**: increased circulation half-life, increased activity and duration of action
- **Linker**: simplified and flexible synthesis, increased activity, and option to control circulation and intracellular half-life
- **GalNAc**: 2-3 fold increase in activity achieved through optimization of number and placement of GalNAc units
- **IP**: 10 siRNA chemistry patent applications filed 2017-2019

AMG 890 chart reproduced from Melquist et al “Targeting apolipoprotein(a) with a novel RNAi delivery platform as a prophylactic treatment to reduce risk of cardiovascular events in individuals with elevated lipoprotein(a)” AHA 2016 Scientific Sessions
Development Pipeline

<table>
<thead>
<tr>
<th>Program</th>
<th>Disease</th>
<th>Target</th>
<th>Discovery</th>
<th>Pre-clinical</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Proprietary/Partnered</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLN24</td>
<td>Beta Thalassemia</td>
<td>TMPRSS6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phase Ib sites open and recruiting patients</td>
</tr>
<tr>
<td>SLN24</td>
<td>Myelodysplastic syndrome</td>
<td>TMPRSS6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLN380</td>
<td>Cardiovascular disease with high LP(α)</td>
<td>LP(α)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IND/CTA planned for H2 2020</td>
</tr>
<tr>
<td>SLN500</td>
<td>Complement-mediated diseases</td>
<td>C3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lead candidate in H1 2020, IND/CTA in 2021</td>
</tr>
</tbody>
</table>
Our siRNA Platform is Validated Through Strategic Partnerships with Leading Pharma Companies

January 2020 - Silence Therapeutics entered into a Technology Evaluation Agreement with Takeda to explore the potential of Silence’s platform to generate siRNA molecules against a novel, undisclosed target discovered by Takeda.

> Takeda will provide Silence with single-digit millions USD of research funding

> Silence and Takeda have further agreed to negotiate the terms of a License Agreement should the initial evaluation study prove successful

July 2019 - Silence Therapeutics entered into a Research and Collaboration Agreement with Mallinckrodt for the development of RNAi therapeutics targeting the complement system. The agreement included SLN500, Silence’s preclinical asset targeting C3, and options on two further complement targets.

> $20 million cash upfront and $5 million equity investment

> Total deal value $2.1 billion - up to $673 million in milestones for SLN500 and up to $713 million in milestones for each additional target

> Silence will be responsible for development activities until the end of Phase 1, after which Mallinckrodt will assume clinical development and responsibility for global commercialization

> Mallinckrodt will cover the costs of the Phase 1 study and GMP manufacture

> Low double-digit to high-teen royalties on net sales for SLN500 and each optioned asset
SLN124 for the treatment of Iron Overload Disorders
Market Opportunity of SLN124

US and EU patients

β-Thalassemia

- ~40,000 TDT\(^1\)
- ~20,000 NTDT\(^2\)

Onset: from birth, but notable incidence of NTDT beyond 35

MDS\(^3\)

> 100,000

Onset: Typically >70y

Orphan indications

Benefits of SLN124

SLN124 aims to:

1. Reduce organ iron levels &
2. Enhance erythropoiesis

Reduced transfusion frequency & Secondary iron overload burden

Standard of Care

Transfusions

Chelators

Limitations:
- Toxicity
- Lack of compliance
- Slow iron reduction
- Intolerance
- Insufficient

Advantages vs Competition

Quality of Life

Safety

Organ iron levels

Compliance

Less frequent dosing

SoC: Transfusions + Chelators

- Antisense RNA
- Luspatercept
- Gene therapy
- Hepcidin mimetics

Notes:
- 1 TDT = Transfusion Dependent Thalassemia
- 2 NTDT = Non Transfusion Dependent Thalassemia
- 3 MDS = Myelodysplastic Syndrome
SLN124 Mechanism of Action: Increasing Hepcidin by Silencing its Repressor TMPRSS6

© Silence Therapeutics 2020

14

TMPRSS6 (Transmembrane Protease Serine 6) is a negative regulator of the BMP/SMAD signaling pathway

- Inhibition of TMPRSS6 in hepatocytes induces hepcidin expression
- Hepcidin reduces absorption of dietary iron and the release of iron from cellular storage, thereby reducing circulatory iron levels
- The liver is the predominant source of hepcidin

| Silencing TMPRSS6 | 1 Increases hepcidin levels | 2 Reduces iron levels | 3 Improves erythropoiesis | 4 Reduces anemia & iron overload |
SLN124 Lowers Iron levels for at Least 6 Weeks After Single Administration in Mice

- Long-lasting functional mRNA KD in liver
- Reduction of serum iron levels for at least 6 weeks
- Well tolerated with long duration of action in mice
SLN124 Ameliorates Splenomegaly and Improves Anemia in β-Thalassemic Mice

Study design
Hbbα3/α4 mice, 2-4 m, n=5-8
2x 3mg/kg SLN124 s.c.
1.25 mg/ml deferiprone in drinking water

Collaboration with
Dr. J. Vadolas & Dr. G. Grigoriadis
Monash Medical Centre/Melbourne, Australia

- Hb ↑ by ≥1.5 g/dL defined as “clinically relevant effect”1
- No ∆ Hb with 5-weeks DFP exposure
- ↓ need for blood transfusions by ↑ Hb (reflects 2-3 units of RBC)2

> SLN124 ameliorates splenomegaly; no impact by iron chelator DFP
> SLN124 improves anemia and ↓ the need for RBC transfusions
> No effect by DFP alone, SLN124 effect maintained in the presence of DFP

1Platzbecker et al., Blood 2019; 2Bosch et al., Vox Sang 2017
SLN124 Reduces Liver Iron Levels and Restores Normal Spleen Architecture in β-Thalassemic Mice

Study design
Hbbth3+/ mice, 2-4 m, n=5-8
2x 3mg/kg SLN124 s.c.
1.25 mg/ml deferiprone in drinking water

Collaboration with
Dr. J. Vadolas & Dr. G. Grigoriadis
Monash Medical Centre/Melbourne, Australia

Iron detection in tissue sections (visualized by Pearl’s Prussian Blue)

<table>
<thead>
<tr>
<th>Wild-type</th>
<th>Hbbth3+/</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>CTRL2</td>
</tr>
<tr>
<td>Liver</td>
<td>SLN124</td>
</tr>
<tr>
<td></td>
<td>SLN124 + DFP</td>
</tr>
<tr>
<td>Spleen</td>
<td>DFP</td>
</tr>
<tr>
<td>rp wp</td>
<td>rp wp</td>
</tr>
<tr>
<td>wp rp</td>
<td>wp rp</td>
</tr>
</tbody>
</table>

20x magnification; blue deposits indicate iron, see arrow; DFP = Deferiprone; CTRL2 = control siRNA; rp = red pulp, wp = white pulp

> SLN124 prevents iron overload in the liver
> SLN124 restores splenic architecture, but DFP has no effect
This is a two part first-in-human, multicenter, randomized placebo controlled single ascending and multiple dose study to assess the preliminary safety, tolerability, PK and efficacy of SLN124 administered subcutaneously for the treatment of non-transfusion dependent thalassemia and low risk myelodysplastic syndrome.

Study design

> Part A:

- Single dose escalation study to evaluate the dose response to SLN124 with a view to identify the most appropriate dose to bring forward into the multiple dose portion of the study
- Primary aim to determine the safety and tolerability of SLN124 for the treatment of non-transfusion dependent β-thalassemia

> Part B:

- Bring forward the most efficacious and best tolerated dose to evaluate multiple administrations of SLN124 on hematinic parameters in patients with β-thalassemia and MDS
- Primary aim to determine the safety and tolerability of multiple doses of SLN124 for the treatment of non-transfusion dependent β-thalassemia and low risk myelodysplastic syndrome
SLN124 Summary

• **Preclinical package:** Robust data generated in several disease models.

• **Status:** Clinical Trial Application approved in UK (MHRA), Bulgaria (BDA), Germany (BfArM) and Turkey. First patients expected to enter a Phase Ib study in Q1 2020. Orphan Designation granted for β-Thalassemia.

• **Clinical plans:** Phase Ib in patients (β-Thalassemia and MDS). Network of KOLs established.

• **Dosing regimen:** Patient-friendly, with monthly or less frequent dosing expected and subcutaneous administration route.

• **Regulatory:** Positive feedback received at Scientific Advice meetings with both the UK (MHRA) and German (BfArM) national regulators.

• SLN124 is well positioned for **commercial success** against current standard of care and other medicines in development.
SLN360 for the treatment of Cardiovascular Disease with high Lp(a)
Lp(a): What is it?

Discovered in 1963 by Kare Berg

Expressed predominantly in the liver

> Highly variable in size

> Expression restricted to human and non-human primates

Lp(a) levels are genetically defined

> Not modified through lifestyle interventions

Contributes to total LDL-C

Considered to be pro-atherogenic, pro-thrombotic and pro-inflammatory

Major untreated risk factor in CVD

> Currently approved therapies do not address Lp(a)
Most biological entities show a normal distribution in a population.

Lp(a) distribution is skewed with 20% of the population with higher than 50 mg/dL.

Nordestgaard B Eur Heart J: 2010 31:2844
Cardiovascular event risk increases with high Lp(a)

Risk Ratio:
- The probability of one outcome versus another.
- A risk ratio of 2 is double the risk.
- A risk of 0.5 is half the risk

Top 10% Lp(a) ~90mg/dL

- **Mortality**
 - 1.2 to 1.4

- **Ischemic Stroke**
 - 1.2 to 1.6

- **Heart failure**
 - 1.6 to 1.8

- **Aortic Stenosis**
 - 2 to 3

- **Myocardial Infarction**
 - 2 to 3

Fold Increase in risk with high Lp(a)

- Mortality: 1.2 to 1.4
- Myocardial Infarction: 2 to 3
- Heart failure: 1.6 to 1.8
- Aortic Stenosis: 2 to 3
- Ischemic Stroke: 1.2 to 1.6
Up to 700 million globally in top 10% Lp(a) levels

Global Prevalence of Elevated Lp(a) [millions]

<table>
<thead>
<tr>
<th>Lp(a) [mg/dL]</th>
<th>20%</th>
<th>10%</th>
<th>5%</th>
<th>1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>64</td>
<td>30</td>
<td>16</td>
<td>3.2</td>
</tr>
<tr>
<td>90</td>
<td>75</td>
<td>37.5</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>150</td>
<td>75</td>
<td>37.5</td>
<td>7.5</td>
</tr>
<tr>
<td>EU</td>
<td>1400</td>
<td>700</td>
<td>350</td>
<td>70</td>
</tr>
</tbody>
</table>

Source: US laboratory Database in 531,144 patients
SLN360 Targets Lp(a) - an **Independent** Risk Factor for Cardiovascular Disease

- Lp(a) levels are genetically determined
- Recognized as a major untreated risk factor in cardiovascular disease
- Lp(a) levels are not significantly modifiable through diet or approved pharmacological therapies
- Large population worldwide with up to 10% with >90mg/dL (2x increased MI risk)
- Multiple mechanisms by which Lp(a) causes CVD
 - > Pro-atherogenic
 - > Pro-thrombotic
 - > Pro-inflammatory

Targeting Lp(a) with SLN360 has the potential to address major unmet needs in cardiovascular disease

- Increased MI Risk with increased Lp(a)
 - **Low Lp(a)**
 - "Stable" plaque
 - > Thick fibrous cap
 - > Small lipid pool
 - > Preserved lumen
 - **High Lp(a)**
 - "Vulnerable" plaque
 - > Thin fibrous cap
 - > Large lipid pool
 - > Inflammation

Image modified from Libby 2002, Nature 420, 868
Sustained and Deep LP(a) Knockdown Demonstrated in Animal Model

Prolonged serum knockdown of Lp(a) in NHP

- Multiple dosing at 3mg/kg resulted in sustained reduction of Lp(a) serum levels (>-90%) for at least over two months after first dose (max ~>-95% KD)
- Similar outcome after single subcutaneous injection of SLN360 at 9mg/kg
- Over 85% KD at NADIR for single 3mg/kg injection with 50% KD still observed after 2 months post treatment
Compliance in Cardiovascular Disease

Compliance and Statins

➢ Patients with ASCVD who stop taking statins are 50% *more likely to die* over a 2-3 year period than those that are compliant\(^1\)

Compliance and Intensity of Treatment

➢ Outcome variable compositive endpoints of CV death or hospitalization for MI, unstable angina, ischaemic stroke, heart failure or revascularization\(^2\)

➢ With optimal intensity and compliance estimated reduction of endpoint of 23.7 per 1000 person years\(^3\)

1: Retrospective cohort analysis of 347,104 Veteran’s Affairs patients (Rodriguez et al, Jama Cardiology 2019)
2: Retrospective cohort study of 29,797 newly treated patients receiving statin and/or ezetimibe from UK Clinical Practice Research Data Link followed for 3 years
3: Khunti et al, Jama Cardiology, 2018
Rationale

> Lp(a) is a low-density lipoprotein produced predominantly by the liver and composed of Apo(a) and Apo B, both hepatocyte expressed genes.

> Genetically defined high Lp(a) serum levels are unaffected by diet and exercise and are an independent risk factor for CVD. There is no specific Lp(a) targeting therapy available at the moment.

> An LPA silencing siRNA would provide a specific, safe and durable approach for reducing Lp(a) levels in high risk patients.

Our Program

> A potent lead sequence has been selected and tested *in vivo* in non-human primates (NHP).

> Proof of mechanism has been achieved in NHP: dose dependent reduction in both LPA (liver mRNA) and Lp(a) (serum protein) observed, with max 95% KD observed after multiple dosing.

> Our drug compares positively against published data by competitors, suggesting a superior performance.

> IND/CTA is planned for H2 2020
SLN500 for the treatment of Complement-Mediated Diseases
Complement as a Target Cascade

C3 - Hub of the complement cascade

- Complement belongs to the innate immune system
- Over 30 serum proteins
- Three pathways converge to form C3 convertases
- Function: MAC formation and immune cell activation
- Eculizumab (anti-C5 Ab): First FDA-approved drug for complement mediated diseases

SLN500 is a promising therapeutic approach allowing for blockade of complement activation downstream of C3

MAC: Membrane attack complex
IgA Nephropathy

Potential indications for C3 siRNA

C3G ~5-15K patients
PNH ~10-15K patients
LN ~240K patients
IgAN ~350K patients
MG ~80-150K patients
AIHA ~140K patients
aHUS ~1.5-4.5K patients

Antineutrophil Cytoplasmic Autoantibodies - Associated Vasculitis
Paroxysmal Nocturnal Hemoglobinuria
Lupus Nephritis

Attractive Market Size
Combined Opportunity in Multiple Orphan Indications

Est. combined prevalence

US
EU

...and others
Dose response study with SLN500 in healthy mice

Single ascending doses of SLN500 (0.3 - 5 mg/kg) in healthy mice produce a reduction in both C3 mRNA and protein levels in a dose response manner.
Rationale

> Activation of the complement system is a pathologic feature of several diseases (such as C3 glomerulopathy, paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome and myasthenia gravis)

> Mutations and/or deficiencies in complement regulating factors or stabilizing autoantibodies of convertases are evident in patients with complement-mediated diseases

> C3 represents a hub in the complement cascade where all three pathways converge

> Blocking the complement cascade and its detrimental downstream effects is a promising therapeutic strategy

SLN500

> siRNA has significant advantages over other modalities, enabling potent and durable knock-down with a high therapeutic index, allowing for an improved dosing regimen for patients suffering from debilitating diseases

> Proof of mechanism has been achieved in mice: Dose-dependent reduction in both C3 mRNA and C3 serum protein was observed

> Collaborative deal signed with Mallinckrodt for C3 and up to 2 other complement targets

> IND/CTA filing is planned for 2021
Silence Therapeutics - Summary

Valuable Platform
- Reproducible, proprietary gene silencing (RNAi) therapeutics platform, rapidly generating internal pipeline and out-licensing options. Platform validated through collaborations with Mallinckrodt and Takeda.

Growing Clinical Pipeline
- SLN124 (β-Thalassemia and MDS\(^1\)) - Phase Ib trial underway
- SLN360 (CVD with high LP(a)) - IND/CTA in H2 2020
- SLN500 (C3) - IND/CTA in 2021

Strong Experienced Team
- Pioneers in siRNA for over 18 years, growing clinical team, and experienced biopharma Board and Management team
- New CEO recruitment ongoing

Target Selection
- Focused on targeting indications in rare diseases and large population targets, including new medicines for cardiovascular disease and complement-mediated diseases

Strong Financial Position
- $44m of cash\(^2\) extends runway to key clinical milestones such as SLN360 and SLN124 Phase I trial readouts

Notes:
- MDS = Myelodysplastic syndrome
- Unaudited, 31\(^{st}\) Dec 2019, £=$1.32

© Silence Therapeutics 2020